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Introduction

Error models
AADL error models are finite automata enriched with probabilistic failures
and repairs.

Two kinds of error models can be distinguished:

@ Discrete-time
o Failures and repairs are modeled by discrete probabilities
o Instantaneous probabilistic decision to fail (or repair)
= discrete-time Markov chains (DTMCs)
@ Continuous-time
o Failures and repairs are modeled by continuous probabilities
o Mostly exponential distributions
o Failures and repairs occur after a random duration
= continuous-time Markov chains (CTMCs)

As error models are interweaved with non-probabilistic nominal models, in fact
decision processes result. We consider deterministic decision processes.
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© Verifying Discrete-Time Markov Chains
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Let’s start easy
Discrete-time Markov chain

A DTMC D is a tuple (S, P, t;,) with:
@ S is a countable nonempty set of states
e P:5xS —[0,1], transition probability function s.t. >~ P(s,s’) =1

® L : S — [0,1], the initial distribution with ) t(s) =1
seS

Initial states
o the set {s € S| tii(s) > 0} are the possible initial states.

Paths through a DTMC are infinite sequence of states.

Analysis of Extended AADL Models: Performability Evaluation iFM & ABZ 2012 6/51



Simulating a die by a fair coin [knuth & Yao]

Heads = “go left”; tails = “go right”. Does this DTMC adequately model a fair
six-sided die? J
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Some events of interest

(Simple) reachability

Eventually reach a state in G C S. Formally:
O0G = {m e Paths(D) | Ji e N.x[i]€ G}
Invariance, i.e., always stay in state in G:

0G = {r € Paths(D) |Vi e N.7[]] € G} = 0G.

Constrained reachability

Or “reach-avoid" properties where states in F C S are forbidden:

FUG = {n e Paths(D) |Ji e N.7[i] € G AVj <i.xw[j]&F}

A\

In a similar way, (O G and QUG are defined.
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Reachability probabilities in finite DTMCs

Problem statement
Let D be a DTMC with finite state space S, s€ S and G C S.

Aim: determine Pr(s = 0G) = Prs{m € Paths(s) | m € 0G }.

Characterisation of reachability probabilities

o Let variable x; = Pr(s = 0 G) for any state s

o if G is not reachable from s, then x; =0
o if s€ G then x; =1

e For any state s € Pre"(G) \ G:

s = Y P(s,t)xe + > P(su)

teS\G ueG
N’

reach Gviate S\ G reach G in one step
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Reachability probabilities: Knuth’s die

@ Consider the event (4

@ Using the previous characterisation we

05 obtain:
1
.D X1:X2:X3:X5:X6zoandX4:1
Xsg = Xs3 = X5 = 0

{init}

_ 1 1
Xsy = 5Xs T 5Xs,
_1 1
Xs, = 5Xs + 5Xss
_ 1 1
Xss = 5X5 + 5X4
_ 1 1
Xss = 5Xs, -+ 5X6

@ Gaussian elimination yields:

<=
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Linear equation system

Reachability probabilities as linear equation system
o Let 5; = Pre*(G) \ G, the states that can reach G by > 0 steps
o A = (P(s,t))

eb = (bs)

steS, the transition probabilities in 57

the probs to reach G in 1 step, i.e., bs = Z P(s,u)
ueG

Then: x = (xs)ses, with xs = Pr(s = 0G) is the unique solution of:

SES;!

x =Ax +b o (I-A)x =b

where | is the identity matrix of cardinality | S| x |S7].
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Repeated reachability and persistence

Long-run theorem

Almost surely any finite DTMC eventually reaches a BSCC and visits all
its states infinitely often.

Repeated reachability = Reachability
For finite DTMC with state space S, G C S, and s € S:

Pr(s EOOG) = Pr(s = 0QU)
where U is the union of all BSCCs T with TN G # 0.

| A

Persistency = Reachability
For finite DTMC with state space S, G C S, and s € S:

Pr(s = 0OG) = Pr(s = QU)
where U is the union of all BSCCs T with T C G.
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Probabilistic bisimulation: intuition

Strong bisimulation is used to compare labeled transition systems.

@ Strongly bisimilar states exhibit the same step-wise behaviour.
@ Our aim: adapt bisimulation to discrete-time Markov chains.
o

This yields a probabilistic variant of strong bisimulation.

(]

When do two DTMC states exhibit the same step-wise behaviour?

Key: if their transition probability for each equivalence class coincides.

v

Analysis of Extended AADL Models: Performability Evaluation iFM & ABZ 2012 13/51



Probabilistic bisimulation

Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S,P, i) be a DTMC and R € S x S an equivalence.
R is a probabilistic bisimulation on S if for any (s,t) € R:

P(s, C) = P(t, C) for all equivalence classes C € S/R.

where P(s,C) =", P(s,s').

For states in R, the probability of moving by a single transition to some
equivalence class is equal.

Probabilistic bisimilarity

Let D be a DTMC and s, t states in D. Then: s is probabilistically
bisimilar to t, denoted s ~ t, if there exists a probabilistic bisimulation R
with (s, t) € R.

| A

v
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Probabilistic bisimulation

Probabilistic bisimulation
Let D =(S,P, ;) be a DTMC and R C S x S an equivalence. Then: R
is a probabilistic bisimulation on S if for any (s, t) € R:

P(s, C) = P(t, C) for all equivalence classes C € S/R.

As opposed to bisimulation on states in transition systems, any probabilistic
bisimulation is an equivalence.
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Quotient under
Quotient DTM under

For D = (S, P, t;,;;) and probabilistic bisimulation ~, C S x S let
D)~p= (S',P',i,), the quotient of D under ~,

where
05 =5/~p= {[s]l~,|s€S}twith[s]., = {s'€S|s~,5}
o P'([s]~,: [s'l~,) = P(s,[s]~,)
° tullslvg) = 2oeps), tinie(s)

v
RENEIS

The transition probability from [s]. to [t]~, equals P(s,[t]~,). This is
well-defined as P(s, C) = P(s’, C) for all s ~, s’ and all ~, equivalence classes C.

v
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Craps

@ Come-out roll:
e 7 or1ll: win
e 2,3, or12:
lose
o else: roll
again

@ Next roll(s):
o 7: lose
e point: win
e else: roll
again
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Bisimulation quotient DTMC of Craps

O
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Preservation

Bisimulation preserves reachability probabilities

Let D be a DTMC and s, t states in D. Then:

s~pt implies Prs=0G)=Pr(tk=OG)

for every ~-closed set of states G C S.

s ~p t implies that (repeated) reachability probabilities, and persistence
probabilities for s and t coincide.

In fact, ~, coincides with probabilistic CTL equivalence.

The coarsest bisimulation quotient can be computed in O(m- log n)
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© Verifying Continuous-Time Markov Chains
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Negative exponential distribution

Density of exponential distribution
The density of an exponentially distributed r.v. Y with rate A € R+ is:

fy(x) = A-e**  for x>0 and fy(x) = 0 otherwise
The cumulative distribution of r.v. Y with rate A € R+ is:

d
Fy(d) = /0 Ae M dx = [-e]d = 1—e M,

The rate A € R< ¢ uniquely determines an exponential distribution.

| A\

Variance and expectation
Let r.v. Y be exponentially distributed with rate A € R-g. Then:
Expectation E[Y] = 3 and variance X[Y] = 3

N
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Exponential pdf and cdf

1.6 :
1al A=05 |
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The higher A, the faster the cdf approaches 1.
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Why exponential distributions?

@ Are adequate for many real-life phenomena

e the time until a radioactive particle decays
o the time between successive car accidents
e inter-arrival times of jobs, telephone calls in a fixed interval

@ Are the continuous counterpart of the geometric distribution
@ Heavily used in physics, performance, and reliability analysis
o Can approximate general distributions arbitrarily closely

o Yield a maximal entropy if only the mean is known
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Continuous-time Markov chains

A CTMC is a DTMC with an exit rate function r : S — R~ where r(s) is
the rate of an exponential distribution. J

r(s) =25, r(t) =4, r(u) =2 and r(v) = 100
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Example: a classical perspective

A CTMC is a DTMC with an exit rate function r : S — R~ where r(s) is the
rate of an exponential distribution.

A CTMC is a DTMC where transition probability function P is replaced by
a transition rate function R. We have R(s,s’) = P(s,s)-r(s). J

r(s) =25, r(t) =4, r(u) = 2 and r(v) = 100
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CTMC semantics by example
CTMC semantics

@ Transition s — s" := r.v. X, o with rate R(s, s’)

@ Probability to go from state sy to, say, state s, is:

Pr{Xs.s, < Ksps1 N Xspp < XSo,53}

R(Soﬁ/'@ -
/

R(50752) o R(50752)
@ R(s0.52) 5 R(s0,51) + R(s0, %) + R(s0,83)  r(s0)
\\
R(%ﬁﬁ\@ @ Probability of staying at most t time in sp is:

Pr{min(Xs,s;» Xsp,55 Xs,55) < t}

1— e7(R(507s1)+R(50,52)+R(50,53))~t = i = efr(so)-t
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CTMC semantics

State-to-state timed transition probability

The probability to move from non-absorbing s to s” in [0, t] is:

e ]

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:

t
/ r(s)‘e*r(s)'x dx = 1—e ")t
0
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CTMCs are omnipresent!

@ Markovian queueing networks (Kleinrock 1975)
@ Stochastic Petri nets (Molloy 1977)
@ Stochastic activity networks (Meyer & Sanders 1985)
@ Stochastic process algebra (Herzog et al., Hillston 1993)
@ Probabilistic input/output automata (Smolka et al. 1994)
@ Calculi for biological systems (Priami et al., Cardelli 2002)

CTMCs are one of the most prominent models in performance analysis
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Paths in a CTMC

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

T = So—E%Sl—ﬂ%SQ"'

such that s; € S and t; € Ryg.

Time instant t; is the amount of time spent in state s;. J

o Let 7[i] := s; denote the (i+1)-st state along the timed path 7.

o Let 7@t be the state occupied in 7 at time t € R>o, i.e. 70t := 7[/]
where i is the smallest index such that >°\_t; > t.
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Path sp 253 Ly 50 2353...... is called Zeno ? if ), t; converges.

?Zeno of Elea (490-430 BC), philosopher, famed for his paradoxes.

v

Example
1 1 1

Soi)sl l>52i>53...S,'«2—i—)5;_;_1...

In timed automata, such executions are typically excluded from the
analysis.

Zeno theorem

For all states s in any CTMC, Pr{m € Paths(s) | 7 is Zeno } = 0.
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Timed reachability events

Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in G C S in the interval /. Formally:
O0'G = {m e Paths(C) | 3t € |. 70t € G }

Invariance, i.e., always stay in state in G in the interval /:

0O/'G = {m e Paths(C) |Vt I.7@t € G} = O!'G.

| A\

Constrained timed reachability
Or “reach-avoid" properties where states in F C S are forbidden:

FU'G = {m e Paths(C) | It € |. 71Ot € G A Vd < t.7@d & F }
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Measurability

Measurability theorem
Events ¢/ G, O’ G, and F U’ G are measurable on any CTMC.

Analysis of Extended AADL Models: Performability Evaluation iFM & ABZ 2012 34/51



Timed reachability probabilities in finite CTMCs

Problem statement

Let C be a CTMC with finite state space S, s € S, t € R>g and G C S.
Aim: Pr(s = 0=t G) = Pr,{m € Paths(s) | m = 0= G}
where Prg is the probability measure in CTMC C with single initial state s.

Characterisation of timed reachability probabilities

e Let function xs(t) = Pr(s = 0=t G) for any state s
e if G is not reachable from s, then x;(t) = 0 for all ¢
o if s € G then x;(t) =1 for all t

e For any state s € Pre"(G) \ G:

t
xs(t) = / > R(s,8)-eOx o x(t—x)
0 / 5 NV Vv
° € probability to move to prob. to fulfill

state s’ at time x OSt=X G from s’

dx

v
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Reachability

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations. This is in general
non-trivial, inefficient, and has several pitfalls such as numerical stability.

4

Reduce the problem of computing Pr(s = (= G) to an alternative
problem for which well-known efficient techniques exist: computing
transient probabilities.
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Timed reachability probabilities = transient probabilities

Aim
Compute Pr(s |= 0=tG) in CTMC C. Observe that once a path 7 reaches

G within t time, then the remaining behaviour along 7 is not important.
This suggests to make all states in G absorbing.

Let CTMC C = (S,P,r, i) and G € S. The CTMC C[G] = (S, Pg,
Iy linie) With Pg(s,t) = P(s,t) if s¢ G and Pg(s,s) =1if s € G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

Pr(s = 0StG) = Pr(s = 0~'G) = p(t) with p(0) = 1.
Lt P
timed reachability in C timed reachability in C[G] transient prob. in C[G]

Analysis of Extended AADL Models: Performability Evaluation iFM & ABZ 2012 37/51



Transient distribution theorem

Theorem: transient distribution as ordinary differential equation

The transient probability vector p(t) = (ps, (), .- ., ps,(t)) satisfies:

p'(t) = p(t)-(R—r) given p(0)

where r is the diagonal matrix of vector r.

Solution technique:

Transform the CTMC (again), and then truncate a Taylor-MacLaurin
expansion. This yields a polynomial-time approximation algorithm.
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Bisimulation on CTMCs

Probabilistic bisimulation [Buchholz, 1994]
Let C = (S,P,r, i) be a CTMC and R C S x S an equivalence. Then:
R is a probabilistic bisimulation on S if for any (s,t) € R:

Q r(s) =r(t), and

@ P(s, C) = P(t, C) for all equivalence classes C € S/R

.

The last two conditions amount to R(s, C) = R(t, C) for all equivalence classes

CeS/R.

| \

Probabilistic bisimilarity

Let C be a CTMC and s, t states in C. Then: s is probabilistically bisimilar to t,
denoted s ~, t, if there exists a probabilistic bisimulation R with (s, t) € R.
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Preservation

Bisimulation preserves timed reachability probabilities

Let C be a CTMC and s, t states in C. Then:

s~mt implies Pr(s =05t G) = Prt = 05 G)

for every ~,-closed set of states G C S and any t.

s ~p t implies that (repeated) reachability probabilities, and persistence
probabilities for s and t coincide.

In fact, ~, coincides with probabilistic CTL equivalence.

The coarsest bisimulation quotient can be computed in O(m- log n)
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@ Tool Demo
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Approach

Approach in the COMPASS toolset

@ Weave the nominal behaviour and error model (model extension)
@ The semantics yields an continuous-time decision process

© Apply (BDD-based) bisimulation minimisation to this process

@ Mostly this yields a CTMC

© \Verify it using the techniques explained before

@ For timed reachability, cover the entire range from 0 to t

Current work is on directly analysing the stochastic decision process J
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Demo Example: Sensor-Filter Acquisition System

Redundant Sensor-Filter
Example: Nominal Model

@ models a value acquisition

t —
system Acquisition System

@ the value is read by a sensor, -
) ] Acquisition
filtered by a filter, and returned
as output
@ two redundant sensors switchs ¥ ¥ switchF
! 4 X
SenSOrl and SenSOr2 switch :’ ‘\ switch value

Sensors ¥V "V Filters

I sensor1 |

output

) filter1
U

@ two redundant filters filter1
and filter2

output

S
@ a central Monitor detects

anomalies in either the output

of the sensor or the filter, and 4

issues a system reconfiguration
(switchS or switchF)
whenever needed
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Modeling Errors
Sensor Error Model

SensorFailures

Sensor Error model:

@ two faulty states: Drifted and Dead o.ooes

@ poisson distribution

o’

Filter Error Model

FilterFailures

Filter Error model:
@ two faulty states: Degrade and Dead

0.007
0.0051

@ poisson distribution

v

Analysis of Extended AADL Models: Performability Evaluation iFM & ABZ 2012 44/51



Modeling Errors

Sensor: SLIM Error Model

error model SensorFailures
features
OK: initial statse;

Drifted: tate;
Dzzxd:eerr?)ir:fzaie? ° Sensor Error Model

end SensorFailures; SensorFallures

error model implementation SensorFailures.Impl

evenF s . 0.0083 0.00015
drift: error event occurrence poisson 0.083;
<>

die: error event occurrence poisson 0.00001;
dieByDrift: error event occurrence poisson 0.0001f
transitions
0K -[ die ]-> Dead;
0K -[ drift ]-> Drifted;
Drifted -[ dieByDrift ]-> Dead;
end SensorFailures.Impl;
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Modeling Errors

Fault Injections

Acquisition

Fault Injections:

@ in state Dead the output of the

switchsl \switchF
sensor is stuck at 15 / \
switch / \ switch value
"V Filters

Sensors V¥ ]

@ in state Dead the output of the \

. q Dead: output := 15 Dead: output := 0
filter is stuck at 0 @N |

Dead: output := 15 Dead: output := 0

|
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Properties of interest

Some properties of interest

@ A filter or a sensor fails
@ A sensor fails

e sensori fails
e sensor? fails

Filters fail twice

Monitor reacts to filter failures

°
°
@ Sensors or filters die within 76 hours
°

sensor? fails before £filter2 within 512 hours
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Example: Sensor filter example

Recapitulate the sensor filter example with error model.
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SEIEY

+ COMPASS Toolset
File Edit View Activities Help
Model  Properties  Validation Correctriess | Performability| Safety FDIR
Properties C Di: Function
Name Forr
[ sensors or filters die in [0.76] The 14
Sensor? fails before filter2 in [0,512] The

0.8

208
i
@
a

a 04

02

0.00 100 200 300 400 500
Upper time bound
Maximum Probability: 872 %
Settings
LA
] m
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+ COMPASS Toolset [=J[m](x]
File Edit View Activities Help

Model  Properties  Validation Correctriess | Performability| Safety FDIR

Properties C ive Distribution Function
Name Forr
Sensors or filters die in [0.76] The 14
[ sensor? fails before filter2 in [0,512] The
0.8
208
i
@
a
a 04
02
o0 R e AN

0 10 20 30 4 50 60 70
Upper time bound
Maximum Probability: 10.0 %

Settings
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Further information

@ Probabilistic model checking (Baier et. al, CACM 2011)
(Kwiatkowska et. al, SFM 2011)
(Baier & Katoen, Principles of Model Checking)

o CTMC model checking (Baier et. al, IEEE TSE 2003)

@ Probabilistic bisimulation (Larsen & Skou, Inf. Comp 1989)
(Kemeny & Snell, 1960)
(Buchholz, Appl. Prob. 1994)

@ Bisimulation minimisation (Derisavi et. al, IPL 2005)
(Valmari & Franceschinis, TACAS 2010)

@ Stochastic decision processes (Guck et. al, NFM 2012)

Analysis of Extended AADL Models: Performability Evaluation iFM & ABZ 2012 51/51



	Introduction
	Verifying Discrete-Time Markov Chains
	Verifying Continuous-Time Markov Chains
	Tool Demo

