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Introduction

Error models

AADL error models are finite automata enriched with probabilistic failures
and repairs.

Two kinds of error models can be distinguished:

Discrete-time

Failures and repairs are modeled by discrete probabilities
Instantaneous probabilistic decision to fail (or repair)

⇒ discrete-time Markov chains (DTMCs)

Continuous-time

Failures and repairs are modeled by continuous probabilities
Mostly exponential distributions
Failures and repairs occur after a random duration

⇒ continuous-time Markov chains (CTMCs)

As error models are interweaved with non-probabilistic nominal models, in fact

decision processes result. We consider deterministic decision processes.
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Let’s start easy

Discrete-time Markov chain

A DTMC D is a tuple (S ,P, ιinit) with:

S is a countable nonempty set of states

P : S×S → [0, 1], transition probability function s.t.
∑

s′ P(s, s ′) = 1

ιinit : S → [0, 1], the initial distribution with
∑
s∈S

ιinit(s) = 1

Initial states

the set { s ∈ S | ιinit(s) > 0 } are the possible initial states.

Paths

Paths through a DTMC are infinite sequence of states.
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Simulating a die by a fair coin [Knuth & Yao]

Heads = “go left”; tails = “go right”. Does this DTMC adequately model a fair

six-sided die?
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Some events of interest

(Simple) reachability

Eventually reach a state in G ⊆ S . Formally:

♦G = {π ∈ Paths(D) | ∃i ∈ N. π[i ] ∈ G }

Invariance, i.e., always stay in state in G :

�G = {π ∈ Paths(D) | ∀i ∈ N. π[i ] ∈ G } = ♦G .

Constrained reachability

Or “reach-avoid” properties where states in F ⊆ S are forbidden:

F UG = {π ∈ Paths(D) | ∃i ∈ N. π[i ] ∈ G ∧ ∀j < i . π[j ] 6∈ F }

In a similar way, �♦G and ♦�G are defined.
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Reachability probabilities in finite DTMCs

Problem statement

Let D be a DTMC with finite state space S , s ∈ S and G ⊆ S .

Aim: determine Pr(s |= ♦G ) = Prs{π ∈ Paths(s) | π ∈ ♦G }.

Characterisation of reachability probabilities

Let variable xs = Pr(s |= ♦G ) for any state s

if G is not reachable from s, then xs = 0
if s ∈ G then xs = 1

For any state s ∈ Pre∗(G ) \ G :

xs =
∑

t∈S\G

P(s, t) · xt︸ ︷︷ ︸
reach G via t ∈ S \ G

+
∑
u∈G

P(s, u)︸ ︷︷ ︸
reach G in one step
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Reachability probabilities: Knuth’s die

Consider the event ♦4

Using the previous characterisation we
obtain:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 = 1
2xs1 + 1

2xs2

xs2 = 1
2xs5 + 1

2xs6

xs5 = 1
2x5 + 1

2x4

xs6 = 1
2xs2 + 1

2x6

Gaussian elimination yields:

xs5 = 1
2 , xs2 = 1

3 , xs6 = 1
6 , and xs0 = 1

6
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Linear equation system

Reachability probabilities as linear equation system

Let S? = Pre∗(G ) \ G , the states that can reach G by > 0 steps

A =
(

P(s, t)
)
s,t∈S?

, the transition probabilities in S?

b =
(
bs
)
s∈S?

, the probs to reach G in 1 step, i.e., bs =
∑
u∈G

P(s, u)

Then: x = (xs)s∈S? with xs = Pr(s |= ♦G ) is the unique solution of:

x = A·x + b or (I− A)·x = b

where I is the identity matrix of cardinality |S?| × |S?|.
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Repeated reachability and persistence

Long-run theorem

Almost surely any finite DTMC eventually reaches a BSCC and visits all
its states infinitely often.

Repeated reachability = Reachability

For finite DTMC with state space S , G ⊆ S , and s ∈ S :

Pr(s |= �♦G ) = Pr(s |= ♦U)

where U is the union of all BSCCs T with T ∩ G 6= ∅.

Persistency = Reachability

For finite DTMC with state space S , G ⊆ S , and s ∈ S :

Pr(s |= ♦�G ) = Pr(s |= ♦U)

where U is the union of all BSCCs T with T ⊆ G .
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Probabilistic bisimulation: intuition

Intuition

Strong bisimulation is used to compare labeled transition systems.

Strongly bisimilar states exhibit the same step-wise behaviour.

Our aim: adapt bisimulation to discrete-time Markov chains.

This yields a probabilistic variant of strong bisimulation.

When do two DTMC states exhibit the same step-wise behaviour?

Key: if their transition probability for each equivalence class coincides.
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Probabilistic bisimulation

Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S ,P, ιinit) be a DTMC and R ⊆ S × S an equivalence.
R is a probabilistic bisimulation on S if for any (s, t) ∈ R:

P(s,C ) = P(t,C ) for all equivalence classes C ∈ S/R.

where P(s,C ) =
∑

s′∈C P(s, s ′).

For states in R, the probability of moving by a single transition to some

equivalence class is equal.

Probabilistic bisimilarity

Let D be a DTMC and s, t states in D. Then: s is probabilistically
bisimilar to t, denoted s ∼p t, if there exists a probabilistic bisimulation R
with (s, t) ∈ R.
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Probabilistic bisimulation

Probabilistic bisimulation

Let D = (S ,P, ιinit) be a DTMC and R ⊆ S × S an equivalence. Then: R
is a probabilistic bisimulation on S if for any (s, t) ∈ R:

P(s,C ) = P(t,C ) for all equivalence classes C ∈ S/R.

Remarks
As opposed to bisimulation on states in transition systems, any probabilistic

bisimulation is an equivalence.
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Example
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Quotient under ∼p

Quotient DTM under ∼p

For D = (S ,P, ιinit) and probabilistic bisimulation ∼p ⊆ S × S let

D/∼p = (S ′,P′, ι′init), the quotient of D under ∼p

where

S ′ = S/∼p= { [s]∼p | s ∈ S } with [s]∼p = { s ′ ∈ S | s ∼p s ′ }
P′([s]∼p , [s

′]∼p) = P(s, [s ′]∼p)

ι′init([s]∼p) =
∑

s′∈[s]∼p
ιinit(s)

Remarks

The transition probability from [s]∼p to [t]∼p equals P(s, [t]∼p ). This is

well-defined as P(s,C ) = P(s ′,C ) for all s ∼p s ′ and all ∼p equivalence classes C .
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Craps

Come-out roll:

7 or 11: win
2, 3, or 12:
lose
else: roll
again

Next roll(s):

7: lose
point: win
else: roll
again
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Bisimulation quotient DTMC of Craps
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Preservation

Bisimulation preserves reachability probabilities

Let D be a DTMC and s, t states in D. Then:

s ∼p t implies Pr(s |= ♦G ) = Pr(t |= ♦G )

for every ∼p-closed set of states G ⊆ S .

Remarks

s ∼p t implies that (repeated) reachability probabilities, and persistence
probabilities for s and t coincide.

In fact, ∼p coincides with probabilistic CTL equivalence.

The coarsest bisimulation quotient can be computed in O(m· log n)
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Random timing
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Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate λ ∈ R>0 is:

fY (x) = λ·e−λ·x for x > 0 and fY (x) = 0 otherwise

The cumulative distribution of r.v. Y with rate λ ∈ R>0 is:

FY (d) =

∫ d

0
λ·e−λ·x dx = [−e−λ·x ]d0 = 1− e−λ·d .

The rate λ ∈ R>0 uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate λ ∈ R>0. Then:

Expectation E [Y ] = 1
λ and variance X [Y ] = 1

λ2
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Exponential pdf and cdf

The higher λ, the faster the cdf approaches 1.
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Why exponential distributions?

Are adequate for many real-life phenomena

the time until a radioactive particle decays
the time between successive car accidents
inter-arrival times of jobs, telephone calls in a fixed interval

Are the continuous counterpart of the geometric distribution

Heavily used in physics, performance, and reliability analysis

Can approximate general distributions arbitrarily closely

Yield a maximal entropy if only the mean is known
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Continuous-time Markov chains

A CTMC is a DTMC with an exit rate function r : S → R>0 where r(s) is
the rate of an exponential distribution.

r(s) = 25, r(t) = 4, r(u) = 2 and r(v) = 100
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Example: a classical perspective

A CTMC is a DTMC with an exit rate function r : S → R>0 where r(s) is the
rate of an exponential distribution.

A CTMC is a DTMC where transition probability function P is replaced by
a transition rate function R. We have R(s, s ′) = P(s, s ′)·r(s).

r(s) = 25, r(t) = 4, r(u) = 2 and r(v) = 100
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CTMC semantics by example

CTMC semantics

Transition s → s ′ := r.v. Xs,s′ with rate R(s, s ′)

Probability to go from state s0 to, say, state s2 is:

Pr{Xs0,s2 ≤ Xs0,s1 ∩ Xs0,s2 ≤ Xs0,s3}
=

R(s0, s2)

R(s0, s1) + R(s0, s2) + R(s0, s3)
=

R(s0, s2)

r(s0)

Probability of staying at most t time in s0 is:

Pr{min(Xs0,s1 ,Xs0,s2 ,Xs0,s3) ≤ t}
=

1− e−(R(s0,s1)+R(s0,s2)+R(s0,s3))·t = 1− e−r(s0)·t
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CTMC semantics

State-to-state timed transition probability

The probability to move from non-absorbing s to s ′ in [0, t] is:

R(s, s ′)

r(s)
·
(

1− e−r(s)·t
)
.

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:∫ t

0
r(s)·e−r(s)·x dx = 1− e−r(s)·t
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CTMCs are omnipresent!

Markovian queueing networks (Kleinrock 1975)

Stochastic Petri nets (Molloy 1977)

Stochastic activity networks (Meyer & Sanders 1985)

Stochastic process algebra (Herzog et al., Hillston 1993)

Probabilistic input/output automata (Smolka et al. 1994)

Calculi for biological systems (Priami et al., Cardelli 2002)

CTMCs are one of the most prominent models in performance analysis
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Paths in a CTMC

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

π = s0
t0−−→ s1

t1−−→ s2 · · ·

such that si ∈ S and ti ∈ R>0.

Time instant ti is the amount of time spent in state si .

Notations

Let π[i ] := si denote the (i+1)-st state along the timed path π.

Let π@t be the state occupied in π at time t ∈ R≥0, i.e. π@t := π[i ]
where i is the smallest index such that

∑i
j=0 tj > t.
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Zeno theorem

Zeno path

Path s0
t0−−→ s1

t1−−→ s2
t2−−→ s3 . . . . . . is called Zeno a if

∑
i ti converges.

aZeno of Elea (490-430 BC), philosopher, famed for his paradoxes.

Example

s0
1−→ s1

1
2−−→ s2

1
4−−→ s3 . . . si

1

2i−−→ si+1 . . .

In timed automata, such executions are typically excluded from the
analysis.

Zeno theorem

For all states s in any CTMC, Pr{π ∈ Paths(s) | π is Zeno } = 0.
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Timed reachability events

Let CTMC C with (possibly infinite) state space S .

(Simple) timed reachability

Eventually reach a state in G ⊆ S in the interval I . Formally:

♦I G = {π ∈ Paths(C) | ∃t ∈ I . π@t ∈ G }

Invariance, i.e., always stay in state in G in the interval I :

�I G = {π ∈ Paths(C) | ∀t ∈ I . π@t ∈ G } = ♦I G .

Constrained timed reachability

Or “reach-avoid” properties where states in F ⊆ S are forbidden:

F UI G = {π ∈ Paths(C) | ∃t ∈ I . π@t ∈ G ∧ ∀d < t. π@d 6∈ F }
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Measurability

Measurability theorem

Events ♦I G , �I G , and F UI G are measurable on any CTMC.
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Timed reachability probabilities in finite CTMCs

Problem statement
Let C be a CTMC with finite state space S , s ∈ S , t ∈ R≥0 and G ⊆ S .

Aim: Pr(s |= ♦≤t G ) = Prs{π ∈ Paths(s) | π |= ♦≤t G }

where Prs is the probability measure in CTMC C with single initial state s.

Characterisation of timed reachability probabilities

Let function xs(t) = Pr(s |= ♦≤t G ) for any state s

if G is not reachable from s, then xs(t) = 0 for all t
if s ∈ G then xs(t) = 1 for all t

For any state s ∈ Pre∗(G ) \ G :

xs(t) =

∫ t

0

∑
s′∈S

R(s, s ′) · e−r(s)·x︸ ︷︷ ︸
probability to move to

state s ′ at time x

· xs′(t−x)︸ ︷︷ ︸
prob. to fulfill

♦≤t−x G from s ′

dx
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Reachability

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations. This is in general
non-trivial, inefficient, and has several pitfalls such as numerical stability.

Solution

Reduce the problem of computing Pr(s |= ♦≤t G ) to an alternative
problem for which well-known efficient techniques exist: computing
transient probabilities.
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Timed reachability probabilities = transient probabilities

Aim

Compute Pr(s |= ♦≤tG ) in CTMC C. Observe that once a path π reaches
G within t time, then the remaining behaviour along π is not important.
This suggests to make all states in G absorbing.

Let CTMC C = (S ,P, r , ιinit) and G ⊆ S . The CTMC C[G ] = (S ,PG ,
r , ιinit) with PG (s, t) = P(s, t) if s /∈ G and PG (s, s) = 1 if s ∈ G .

All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma

Pr(s |= ♦≤tG )︸ ︷︷ ︸
timed reachability in C

= Pr(s |= ♦=tG )︸ ︷︷ ︸
timed reachability in C[G ]

= p(t) with p(0) = 1s︸ ︷︷ ︸
transient prob. in C[G ]

.
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Transient distribution theorem

Theorem: transient distribution as ordinary differential equation

The transient probability vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

p′(t) = p(t) · (R− r) given p(0)

where r is the diagonal matrix of vector r .

Solution technique:

Transform the CTMC (again), and then truncate a Taylor-MacLaurin
expansion. This yields a polynomial-time approximation algorithm.
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Bisimulation on CTMCs

Probabilistic bisimulation [Buchholz, 1994]

Let C = (S ,P, r , ιinit) be a CTMC and R ⊆ S × S an equivalence. Then:
R is a probabilistic bisimulation on S if for any (s, t) ∈ R:

1 r(s) = r(t), and

2 P(s,C ) = P(t,C ) for all equivalence classes C ∈ S/R

The last two conditions amount to R(s,C ) = R(t,C ) for all equivalence classes

C ∈ S/R.

Probabilistic bisimilarity

Let C be a CTMC and s, t states in C. Then: s is probabilistically bisimilar to t,

denoted s ∼m t, if there exists a probabilistic bisimulation R with (s, t) ∈ R.
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Preservation

Bisimulation preserves timed reachability probabilities

Let C be a CTMC and s, t states in C. Then:

s ∼m t implies Pr(s |= ♦≤t G ) = Pr(t |= ♦≤t G )

for every ∼p-closed set of states G ⊆ S and any t.

Remarks

s ∼p t implies that (repeated) reachability probabilities, and persistence
probabilities for s and t coincide.

In fact, ∼p coincides with probabilistic CTL equivalence.

The coarsest bisimulation quotient can be computed in O(m· log n)
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Approach

Approach in the COMPASS toolset

1 Weave the nominal behaviour and error model (model extension)

2 The semantics yields an continuous-time decision process

3 Apply (BDD-based) bisimulation minimisation to this process

4 Mostly this yields a CTMC

5 Verify it using the techniques explained before

6 For timed reachability, cover the entire range from 0 to t

Current work is on directly analysing the stochastic decision process
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Demo Example: Sensor-Filter Acquisition System

Redundant Sensor-Filter
Example: Nominal Model

models a value acquisition
system

the value is read by a sensor,
filtered by a filter, and returned
as output

two redundant sensors
sensor1 and sensor2

two redundant filters filter1

and filter2

a central Monitor detects
anomalies in either the output
of the sensor or the filter, and
issues a system reconfiguration
(switchS or switchF)
whenever needed

Acquisition System
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Modeling Errors

Sensor Error model:

two faulty states: Drifted and Dead

poisson distribution

Filter Error model:

two faulty states: Degrade and Dead

poisson distribution

Sensor Error Model

Filter Error Model
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Modeling Errors

Sensor: SLIM Error Model

error model SensorFailures
features

OK: initial state;
Drifted: error state;
Dead: error state;

end SensorFailures;

error model implementation SensorFailures.Impl
events

drift: error event occurrence poisson 0.083;
die: error event occurrence poisson 0.00001;
dieByDrift: error event occurrence poisson 0.00015;

transitions
OK -[ die ]-> Dead;
OK -[ drift ]-> Drifted;
Drifted -[ dieByDrift ]-> Dead;

end SensorFailures.Impl;

Sensor Error Model
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Modeling Errors

Fault Injections:

in state Dead the output of the
sensor is stuck at 15

in state Dead the output of the
filter is stuck at 0

Fault Injections
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Properties of interest

Some properties of interest

A filter or a sensor fails

A sensor fails

sensor1 fails
sensor2 fails

Filters fail twice

Monitor reacts to filter failures

Sensors or filters die within 76 hours

sensor2 fails before filter2 within 512 hours
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Example: Sensor filter example

Recapitulate the sensor filter example with error model.
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Further information

Probabilistic model checking (Baier et. al, CACM 2011)

(Kwiatkowska et. al, SFM 2011)

(Baier & Katoen, Principles of Model Checking)

CTMC model checking (Baier et. al, IEEE TSE 2003)

Probabilistic bisimulation (Larsen & Skou, Inf. Comp 1989)

(Kemeny & Snell, 1960)

(Buchholz, Appl. Prob. 1994)

Bisimulation minimisation (Derisavi et. al, IPL 2005)

(Valmari & Franceschinis, TACAS 2010)

Stochastic decision processes (Guck et. al, NFM 2012)

Analysis of Extended AADL Models: Performability Evaluation iFM & ABZ 2012 51/51


	Introduction
	Verifying Discrete-Time Markov Chains
	Verifying Continuous-Time Markov Chains
	Tool Demo

