
iFM & ABZ 2012 Tutorial
Safety, Dependability and Performance Analysis

of Extended AADL Models
Part 3: Checking Functional Correctness

European Space Agency
European Space Research and Technology Centre

RWTH Aachen University
Software Modeling and Verification Group
Joost-Pieter Katoen & Thomas Noll

Fondazione Bruno Kessler
Centre for Scientific and Technological Research
Marco Bozzano & Alessandro Cimatti

iFM & ABZ 2012; June 18, 2012; Pisa, Italy



Outline

Analysis of Extended AADL Models: Checking Functional Correctness iFM & ABZ 2012 2/1



Verification and Validation

Objectives

Validate the quality of system requirements

Simulate the system to ensure behavior is as expected

Check the absence of unwanted behaviors (e.g., deadlocks)

Check system behavior against a set of properties

Analyses

Requirements Validation

Simulation

Deadlock Checking

Property Verification

COMPASS Technologies

Model Checking

Analysis of Extended AADL Models: Checking Functional Correctness iFM & ABZ 2012 3/1



Verification and Validation

Objectives

Validate the quality of system requirements

Simulate the system to ensure behavior is as expected

Check the absence of unwanted behaviors (e.g., deadlocks)

Check system behavior against a set of properties

Analyses

Requirements Validation

Simulation

Deadlock Checking

Property Verification

COMPASS Technologies

Model Checking

Analysis of Extended AADL Models: Checking Functional Correctness iFM & ABZ 2012 3/1



Verification and Validation

Objectives

Validate the quality of system requirements

Simulate the system to ensure behavior is as expected

Check the absence of unwanted behaviors (e.g., deadlocks)

Check system behavior against a set of properties

Analyses

Requirements Validation

Simulation

Deadlock Checking

Property Verification

COMPASS Technologies

Model Checking

Analysis of Extended AADL Models: Checking Functional Correctness iFM & ABZ 2012 3/1



Requirements Validation

Motivations

Ensure that requirements capture the design intent

Bugs in requirements are very expensive to correct, when discovered
late in the development process

Flaws in the requirements engineering phase are responsible for a
significant percentage of product defects and re-engineering efforts

Goals

Validate the quality of requirements before the system is implemented

Ensure that we are “building the right system”

Detect ambiguities, inconsistencies, and deficiencies in requirements
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Formal Verification

Goals

Discover as many bugs as possible, as early as possible

Certify absence of errors

Shorten time to market, improve quality standards

Model Checking

System formally modeled as a mathematical theory

Properties expressed using temporal logic

System correctness as mathematical proving of a theorem

Model checker: a software tool that can

Prove a theorem
Find a counterexample that shows that the theorem is wrong

Fully automated, exhaustive, useful for the designer
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Model Checking

Model Checker

A pictorial view of a model checker

Model
Checker

Temporal
Formula

Finite State
Model

G(p->Fq)

pq

Yes

No +
Counterexample

p

q
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Model Checking

Modeling

State transitions systems are a traditional formalism to model reactive
systems and their evolution

Basis for model checking

State Transition System

Let P be a set of propositions.
A state transition system (also known as
Kripke structure) is a tuple 〈S, I,R,L〉
where:

S is a finite set of states

I ⊆ S is the set of initial states

R ⊆ S × S is the transition relation

L : S −→ 2P is the labeling function

An example

B

C D

A
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Model Checking

Trace

Let M = 〈S, I,R,L〉 be a Kripke structure. A trace for M is a sequence
s0, s1, . . . , sk such that si ∈ S, s0 ∈ I and (si−1, si ) ∈ R for i = 1 . . . k

Path

A path is a Kripke structure is an infinite trace, that is, a sequence
σ = s0, s1, s2, . . .

Unwinding of a Kripke Structure

A Kripke structure unwinds into an infinite tree
representing all possible paths

Labeling Function

We write s |= p to indicate that p ∈ L(s)
(proposition p holds in state s)

An Example
A

B

DC

C DD
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Temporal Logic

Temporal Logic

Temporal logic can be used to express properties of reactive systems
modeled as Kripke structures

Safety vs Liveness

System properties can be classified into:

Safety properties: “nothing bad ever happens”

Liveness properties: “something desirable will eventually happen”

Some example properties

Safety: “Two concurrent processes never execute simultaneously
within their critical section”

Liveness: “A subroutine will eventually terminate execution and
return control to the caller”
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Temporal Logic

Refuting temporal properties

A safety property p can be refuted by a finite counterexample trace
such that p does not hold in the end state of the trace

A liveness property p can be refuted by a infinite counterexample
trace (with a loop), such that ¬p holds along all states of the trace

Refuting safety

p

Refuting liveness (infinite trace)

p

p
p

p

p

p
p

p
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Temporal Logic

Examples of Temporal Logic

Computation Tree Logic (CTL)

Linear Temporal Logic (LTL)

Temporal Logic Interpretation

CTL is interpreted over the unwound tree

LTL is interpreted over linear paths

Tree
A

B

DC

C DD

Linear Paths

B B

A A

B

A

B

A

C

A

B

C C C C D

C C C D D

C D D D

C D D D D
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Temporal Logic

Semantics of CTL
p p p p q

p p p p

pppp q

q

finally globally next until

EF EG EX U ]E[

UA[ ]AXAGAF

Semantics of LTL

q

q

finally

F

X

until

globally

G

next

U

p

p
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p
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Temporal Logic and Property Patterns

Property specification in COMPASS

Recall from Part I: Patterns, not Formulas!

Patterns

The system shall have a behavior where φ globally holds.

Patterns

The system shall have a behavior where 80 ≤ voltage ≤ 90 globally
holds.

|
(by automatic transformation)

↓
Logic

AG (80 ≤ voltage ≤ 90) (CTL)

G (80 ≤ voltage ≤ 90) (LTL)
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Model Checking

Model Checking Problem

Given a state transition system M and a temporal formula φ, model
checking is the problem of deciding whether φ holds inM, writtenM |= φ

Explicit-State Model Checking

Based on the expansion and storage of individual states

Explicit representation of the Kripke structure (e.g., as a labeled,
directed graph)

May suffer from the state explosion problem

Symbolic Model Checking

Manipulates sets of states and transitions as logical formulas

Logical formulas may admit a large number of models

Leads to compact representations that can be effectively manipulated
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Symbolic Model Checking

Symbolic Model Checking

Symbolic representation:

Construct bijection between S and 2P

States: represented using a vector of Boolean variables x

Initial states: I(x)

Transition relation: R(x , x ′), where x ′ represent next state variables

An Example

x = x1x2

A : ¬x1 ∧¬x2, B : ¬x1 ∧ x2, C : x1 ∧¬x2, D : x1 ∧ x2

I(x) = ¬x1 ∧ ¬x2
(¬x1 ∧ ¬x2 ∧ ¬x ′

1 ∧ x ′
2) ∨

R(x , x ′) = (¬x1 ∧ x2 ∧ x ′
1 ∧ ¬x ′

2) ∨
(¬x1 ∧ x2 ∧ x ′

1 ∧ x ′
2) ∨

. . .

B

C D

A
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Symbolic Model Checking

BDD-based Model Checking

Symbolic representation and manipulation of formulas based on
BDDs (Binary Decision Diagrams)

Canonical representation, given a variable ordering

Operations on sets of states as logical operations on BDDs

Efficient BDD packages exist for BDD manipulation

Breakthrough for model checking

SAT-based Model Checking

Also known as Bounded Model Checking (BMC)

Bounded search for a violation, up to bound k

Problem is encoded into a propositional formula, by unwinding the
symbolic description of the transition relation over time:
I(x0) ∧R(x0, x1) ∧ . . . ∧R(xk−1, xk)

Solution leverages the power of modern SAT solvers
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Symbolic Model Checking

BDD-based versus SAT-based Model Checking

Complementary techniques:

SAT-based may deal with a larger number of variables

SAT-based useful for bug finding

BDD-based may be more effective for long counterexamples

BDD-based may be more effective in proving correctness
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Ongoing Activities

V&V for the Software Reference Architecture

New ESA study: FOREVER

Functional requirements and verification techniques for the software
reference architecture, including:

Formalization of functional and non-functional requirements
Contract-based refinement of assumptions and guarantees from system
to software level
Integration of the software reference architecture in the process of
requirements refinement and verification
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Ongoing Activities

Model Slicing

Input: AADL specification and logical property

Goal: remove parts of specification that are irrelevant for model
checking the property

Reference: Slicing AADL Specifications for Model Checking
(Odenbrett et al., NASA FM 2010)

Compositional Model Checking

Development of compositional analysis techniques to exploit the
hierarchical structure of models (“divide & conquer”)

Funded by ESA NPI program
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Demo Example: Sensor-Filter Acquisition System

Redundant Sensor-Filter
Example: Nominal Model

models a value acquisition
system

the value is read by a sensor,
filtered by a filter, and returned
as output

two redundant sensors
sensor1 and sensor2

two redundant filters filter1

and filter2

a central Monitor detects
anomalies in either the output
of the sensor or the filter, and
issues a system reconfiguration
(switchS or switchF)
whenever needed

Acquisition System
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Modeling Sensors

Modeling Sensors: SLIM Nominal Model (1)

system Sensors
features
output: out data port int default 1;
switch: in event port;

end Sensors

system implementation Sensors.Impl
subcomponents
sensor1: device Sensor in modes (Primary);
sensor2: device Sensor in modes (Backup);

connections
data port sensor1.output -> output in modes (Primary);
data port sensor2.output -> output in modes (Backup);

modes
Primary: activation mode;
Backup: mode;

transitions
Primary -[switch]-> Backup;

end Sensors.Impl;

Sensors Component
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Modeling Sensors

Modeling Sensors: SLIM Nominal Model (2)

device Sensor
features
output: out data port int default 1;

end Sensor;
device implementation Sensor.Impl
modes
Cycle: activation mode;

transitions
Cycle -[when output < 5 then output := output + 1]-> Cycle;

end Sensor.Impl;

Sensors Component
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Modeling the Monitor

Modeling the Monitor: SLIM Nominal Model

fdir system Monitor
features

valueS: in data port int default 0;
valueF: in data port int default 0;
switchS: out event port;
switchF: out event port;
alarmS : out data port bool default false;
alarmF : out data port bool default false;

end Monitor;

fdir system implementation Monitor.Impl
modes

OK: activation mode;
FailS: mode;
FailF: mode;
FailSF: mode;

transitions
OK -[switchF when valueF = 0]-> FailF;
OK -[switchS when valueS > 5]-> FailS;
FailF -[switchS when valueS > 5 then alarmF := valueF = 0]-> FailSF;
FailF -[when valueF = 0 then alarmF := true]-> FailF;
FailS -[switchF when valueF = 0 then alarmS := valueS > 5]-> FailSF;
FailS -[when valueS > 5 then alarmS := true]-> FailS; -- S fails again
FailSF -[when valueF = 0 then alarmF := true; alarmS := valueS > 5]-> FailSF;
FailSF -[when valueS > 5 then alarmS := true; alarmF := valueF = 0]-> FailSF;

end Monitor.Impl;

Monitor Component
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Modeling Errors

Sensor Error model:

two faulty states: Drifted and Dead

poisson distribution

Filter Error model:

two faulty states: Degrade and Dead

poisson distribution

Sensor Error Model

Filter Error Model
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Modeling Errors

Sensor: SLIM Error Model

error model SensorFailures
features

OK: initial state;
Drifted: error state;
Dead: error state;

end SensorFailures;

error model implementation SensorFailures.Impl
events

drift: error event occurrence poisson 0.083;
die: error event occurrence poisson 0.00001;
dieByDrift: error event occurrence poisson 0.00015;

transitions
OK -[ die ]-> Dead;
OK -[ drift ]-> Drifted;
Drifted -[ dieByDrift ]-> Dead;

end SensorFailures.Impl;

Sensor Error Model
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Modeling Errors

Fault Injections:

in state Dead the output of the
sensor is stuck at 15

in state Dead the output of the
filter is stuck at 0

Fault Injections
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Properties of interest

Some properties of interest

A filter or a sensor fails

A sensor fails

sensor1 fails
sensor2 fails

Filters fail twice

Monitor reacts to filter failures

Sensors or filters die within 76 hours

sensor2 fails before filter2 within 512 hours
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Content of Tool Demo

Demo Steps

1 Loading of models

2 Editing of fault injections

3 Deadlock checking

4 Editing of properties

5 Model Checking

6 Simulation (random & guided)
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